Nonexocytotic release of endogenous noradrenaline in the ischemic and anoxic rat heart: mechanism and metabolic requirements.

نویسندگان

  • A Schömig
  • S Fischer
  • T Kurz
  • G Richardt
  • E Schömig
چکیده

The release of endogenous noradrenaline and its deaminated metabolite dihydroxyphenylglycol in the myocardium have been studied in the isolated perfused heart of the rat subjected to three models of energy depletion: ischemia, anoxia, and cyanide intoxication. Anoxia and cyanide intoxication were combined with substrate deficiency at constant perfusion flow. All three energy-depleting procedures caused a similar overflow of noradrenaline which, following a constant delay of 10 minutes without increased release, amounted to more than 25% of total heart content within 40 minutes. This noradrenaline overflow was not diminished in the absence of extracellular calcium and was inhibited by the uptake1 blocker desipramine in all three experimental models, indicating a common and nonexocytotic release mechanism. In the presence of glucose, neither anoxia nor cyanide intoxication resulted in a measurable noradrenaline overflow. Conversely, blockade of glycolysis or glucose depletion prior to ischemia or cyanide poisoning accelerated the noradrenaline overflow, demonstrating a key role of the sympathetic nerve cells' energy status in causing nonexocytotic catecholamine release. Blockade of energy metabolism in the presence of oxygen (cyanide model) resulted in the overflow of high amounts of dihydroxyphenylglycol that was not inhibited by uptake1 blockade. The release of the lipophilic dihydroxyphenylglycol by diffusion reflects deamination of axoplasmic noradrenaline by monoamine oxidase. Since saturation of the enzyme could be excluded in this model dihydroxyphenylglycol release can be taken as a mirror of cytoplasmic noradrenaline concentration. The results obtained by these studies indicate that nonexocytotic catecholamine release is a two-step process induced by energy deficiency in the sympathetic varicosity. In a first step, noradrenaline is lost from storage vesicles, resulting in increasing axoplasmic concentrations. The second step is the rate-limiting transport of intracellular noradrenaline across the cell membrane by the uptake1 carrier that has reversed its normal net transport direction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuronal sodium homoeostatis and axoplasmic amine concentration determine calcium-independent noradrenaline release in normoxic and ischemic rat heart.

Calcium-independent noradrenaline release was studied in the isolated perfused rat heart under conditions of normoxia, cyanide intoxication, and ischemia. The release of endogenous noradrenaline and dihydroxyphenylglycol were determined by high-performance liquid chromatography. The release of dihydroxyphenylglycol, the main neuronal noradrenaline metabolite, was used as an indicator of the fre...

متن کامل

Adenosine inhibits exocytotic release of endogenous noradrenaline in rat heart: a protective mechanism in early myocardial ischemia.

The effects of exogenous and endogenous adenosine on exocytotic noradrenaline release were studied in rat hearts perfused in situ. Exocytotic release of endogenous noradrenaline (determined by high pressure liquid chromatography) was induced by electrical stimulation of the left cervicothoracic ganglion. Exogenous adenosine significantly reduced noradrenaline overflow from the heart. This suppr...

متن کامل

Neuronal Sodium Homoeostasis and Axoplasmic Amine Concentration Determine Calcium-Independent Noradrenaline Release in Normoxic and Ischemic Rat Heart

Calcium-independent noradrenaline release was studied in the isolated perfused rat heart under conditions of normoxia, cyanide intoxication, and ischemia. The release of endogenous noradrenaline and dihydroxyphenylglycol were determined by high-performance liquid chroma tography. The release of dihydroxyphenylglycol, the main neuronal noradrenaline metabolite, was used as an indicator of the fr...

متن کامل

Effect of endogenous nitric oxide on cardiac ischemic preconditioning in rat

Introduction: Ischemic Preconditioning (IPC) is the phenomen that happens on the heart by one or several short periods of ischemia followed by reperfusion that improve the postischemic recovery of mechanical function. Ischemic preconditioning (IPC) may protect the heart from ischemia reperfusion injury by nitric oxide formation. This study investigated the effect of ischemic preconditioni...

متن کامل

Exploring the role and inter-relationship among nitric oxide, opioids, and KATP channels in the signaling pathway underlying remote ischemic preconditioning induced cardioprotection in rats

Objective(s): This study explored the inter-relationship among nitric oxide, opioids, and KATP channels in the signaling pathway underlying remote ischemic preconditioning (RIPC) conferred cardioprotection. Materials and Methods: Blood pressure cuff was placed around the hind limb of the animal and RIPC was performed by 4 cycles of infla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 60 2  شماره 

صفحات  -

تاریخ انتشار 1987